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Abstract. The topological structure of the Nieh–Yan form in a four-dimensional manifold is given
by making use of the decomposition of spin connection. The case of the generalized Nieh–Yan
form on a 2d -dimensional manifold is discussed with an example of an eight-dimensional case
which is studied in detail. The chiral anomaly with nonvanishing torsion is also studied. The
further contributions from the torsional part to the chiral anomaly are found to estimate from the
zeros of some fields under the pure gauge condition.

1. Introduction

Torsion might be the most unusual field in physics. Although it has been under investigation
for more than two-thirds of a century, there is no general agreement on its mathematical
formulation nor on its physical significance. A vast amount of work on torsion has been done
by many physicists (see, for example, [1–11]) since it was proposed by E Cartan [12] in the
1920s.

Consider a compact manifoldM with metricgµν . There are two dynamically independent
1-forms: the connectionωab = ωabµ dxµ and the vielbeinea = eaµ dxµ. The curvature and
torsion 2-forms are defined by

Rab = dωab − ωac ∧ ωcb (1)

T a = dea − ωab ∧ eb. (2)

In geometry,ωab andea reflect the affine and metric properties ofM. While in physics, the
curvature and torsion may be related to energy momentum tensor and spin current respectively.

Nieh and Yan [13] first gave the four-dimensional torsional invariant 4-form as

N = T a ∧ T a − Rab ∧ ea ∧ eb. (3)

This is the only nontrivial locally exact 4-form which vanishes in the absence of torsion and
is clearly independent of the Pontryagin and Euler densities. In any local patch where the
vielbein is well defined,N can be written as

N = d(ea ∧ T a) (4)

and, therefore, is locally exact. The 3-formea ∧ T a is a Chern–Simons-like form that can be
used as a Lagrangian for the dreibein in three dimensions. The dual of this 3-form in four
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dimensions is also known as the totally antisymmetric part of the torsion and is sometimes
also referred to as H-torsion,

ea ∧ T a ∧ dxρ = εµνλρTµνλ d4x. (5)

This component of the torsion tensor is the one that couples to the spin-1
2 fields [7].

Recently, there have been some discussions on the question of further contributions to
the Chiral anomaly in the presence of space–time with torsion [5–11]. It was shown that the
Nieh–Yan form does contribute to the chiral anomaly for a massive field. This additional
anomaly term is associated with vacuum polarization diagrams with two external axial torsion
vertices, rather than with the usual triangle diagrams [11].

In this paper, by making use of the decomposition theory ofSO(N) spin connection (see,
for example, [16]) reviewed in section 2, we give the topological structure of the Nieh–Yan
form in a four-dimensional manifold in section 3. The Nieh–Yan number is found to be the
sum of the indices of some fieldφ at its zeros. The Hopf indices and Brouwer degrees ofφ

label the local properties of the Nieh–Yan form. We also present the relationship between the
Nieh–Yan number and the winding number. In section 4, a general discussion on the cases
of the generalized Nieh–Yan form on a 2d -dimensional manifold is given, with an elaborate
study of the eight-dimensional case, as an example. By applying the results obtained in this
paper and the results obtained by Duan and Fu in [21] to the chiral anomaly, in section 5 it
is found that under the pure gauge condition, the contributions from the chiral anomaly only
come from the zeros of some fieldφ̃L(R) andφ. Finally, we give a short conclusion in section 6.
One should note that the main result of this paper is based on reduction to the contribution by
singular points, i.e. those where ordinary formulae do not hold.

2. The decomposition theory of spin connection

In this section, we give a short review of the decomposition theory ofSO(N)which is a useful
tool in the discussion of the topological structure of the Nieh–Yan form used in later sections.

A smooth vector fieldϕa (a = 1, 2, . . . , N) can be found on the base manifoldM (a
section of a vector bundle overM ). We define a unit vectorn onM as

na = ϕa/‖ϕ‖ a = 1, 2, . . . , N

‖ϕ‖ = √ϕaϕa (6)

in which the superscript ‘a’ is the local orthonormal frame index. In fact,n is identified as a
section of the sphere bundle overM (or a partial section of the vector bundle overM ). We
see that the zeros ofφ are just the singular points ofn.

Let theN -dimensional Dirac matrixγa (a = 1, 2, . . . , N) be the basis of the Clifford
algebra which satisfies

γaγb + γbγa = 2δab. (7)

A unit vector fieldn onM can be expressed as a vector of Clifford algebra

n = naγa. (8)

The spin connection 1-form and curvature 2-form are represented as Clifford-algebra-valued
differential forms, respectively,

ω = 1
2ω

abIab F = 1
2F

abIab (9)

in which Iab is the generator of the spin representation of the groupSO(N)

Iab = 1
4[γa, γb] = 1

4(γaγb − γbγa). (10)
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The covariant derivative 1-form ofna can be represented in terms ofn andω as

Dn = dn− [ω, n] (11)

and the curvature 2-form as

F = dω − ω ∧ ω. (12)

ArbitraryU ∈ Spin(N), which satisfies

UU† = U†U = I (13)

is an even versor [14]. The induced ‘spinorial’ transformation byU to the basisγi of the
Clifford algebra giveN orthonormal vectorsui [15] via

ui := UγiU† = uai γa (14)

whereuai is the coefficient ofui in the representation of Clifford algebra. From the relationship
betweenU anduai , we see thatui has the same singular points with respect to different ‘i’. By
(14), it is easy to verify thatui satisfy

uiuj + ujui = 2δij i, j = 1, 2, . . . N. (15)

From (11) we know that the covariant derivative 1-form ofui is

Dui = dui − [ω, ui ]. (16)

There exists the following formula for a Clifford algebrar-vectorA [14]

uiAui = (−1)r (N − 2r)A. (17)

Forω is a Clifford algebra 2-vector and using (17), the spin connectionω can be decomposed
byN orthonormal vectors,ui , as follows:

ω = 1
4(dui ui − Dui ui) (18)

or

ωab = duai u
b
i − Duai u

b
i . (19)

It can be proved that the general decomposition formula (18) has a global property and is
independent of the choice of the local coordinates [16].

By choosing the gauge condition

Dui = 0 (20)

we can define a generalized pseudo-flat spin connection as

ω0 = 1
4dui ui. (21)

Suppose there existl singular pointszi (i = 1, 2, . . . , l.) in the orthonormal vectorsuj . One
can easily prove that at the normal points ofuj

F (ω0) = 0 when x 6= zi . (22)

For the derivative ofui at the singular pointszi is undefined, formula (22) is invalid atzi .
Hence, the curvature under the gauge condition (20) is a generalized function

F

{
= 0 when x 6= zi
6= 0 when x = zi .

(23)

This is why we callω0 the pseudo-flat spin connection. In fact, the gauge condition (20) is the
pure gauge condition supported by the fact that one can always find a frame which is locally
flat.
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3. Topological structure of Nieh–Yan form in a four-dimensional manifold

One of the properties of topological invariance is that it is independent of connection.
Therefore, we choose the pseudo-flat connection

ωab = duai u
b
i (24)

to make the calculation easier. Under this gauge condition, there must exist singularity points
on the manifold if the topology of this manifold is nontrivial. In fact, what we have done is
to choose a frame which is locally flat. The choice of frame does not change the topology
of the manifold. For the singular property of the pseudo-flat connection, the contribution by
the zeros of some field at its singular points will give the topological characteristic. It is a
useful method to choose a locally flat frame when dealing with the topological properties of
manifolds, see, for example, [22].

Using the pseudo-flat spin connection, we can rewrite the torsion as

T a = Dea = D(eiu
a
i ) = dei u

a
i (25)

and the Nieh–Yan form

N = d(ea ∧ T a) = dei ∧ dei (26)

whereei are the projection of vielbein onto the basis

ei = eauai . (27)

In quaternionic representation, a 4-vectorEφ = (φ1, φ2, φ3, φ4) is written as

φ = φ1i + φ2j + φ3k + φ4 φ∗ = −φ1i − φ2j − φ3k + φ4 (28)

and the vielbein projection

e = e1i + e2j + e3k + e4 (29)

where(1, i, j, k) is the basis of the quaternion satisfyingi2 = −1, ij = k, etc. To give a frame
that is locally flat, we can find someφ, which gives the vielbein expressed in the form

e = l

‖φ‖2φ dφ∗ (30)

where the constantl has dimensions of length. The choice of a local flat metric is in coincidence
with the pseudo-flat connection chosen, which makes singular points exist for the nontrivial
topological property of the manifold.

It is well known that the quaternionic representation can be expressed in terms of the
Clifford algebra as

φ = φisi i = 1, 2, 3, 4 (31)

where

s = (i Eσ , I ) s† = (−i Eσ , I ) (32)

and

e = eisi . (33)

The vielbein projection can be rewritten as

e = l

‖φ‖2φ dφ†. (34)

Then we get the Nieh–Yan form as

N = dei ∧ dei = 1
2 Tr(de ∧ de). (35)
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By making use of the relationship

εijkl = 1
2 Tr(sisj sksl) (36)

the Nieh–Yan form can be expressed in terms of a unit vector,ni = φi
‖φ‖ , as

N = l2

2
Tr(dn ∧ dn ∧ dn ∧ dn)

= l2εijkl dni ∧ dnj ∧ dnk ∧ dnl. (37)

The derivative ofna can be deduced as

dni = dφi
‖φ‖ − φi d

(
1

‖φ‖
)
. (38)

Substituting it into (37), we obtain the expression ofN onS(M)

N = l2εijkl d
(
φi

‖φ‖4 dφj ∧ dφk ∧ dφl

)
. (39)

Using

φi

‖φ‖4 = −
1

2

∂

∂φi

(
1

‖φ‖2
)

(40)

equation (39) becomes

N = − l
2

2
εijkl

∂

∂φm

∂

∂φi

(
1

‖φ‖2
)
∂φm

∂xµ

∂φj

∂xν

∂φk

∂xλ

∂φl

∂xρ

εµνλρ√
g

√
g d4x (41)

whereg = det(gµν), gµν is the metric tensor ofM . Defining the Jacobian D(φ/x) as

εijkl D(φ/x) = εµνλρ ∂φi
∂xµ

∂φj

∂xν

∂φk

∂xλ

∂φl

∂xρ
(42)

and noting that

εijklεmjkl = 6δim (43)

we get

N = −3l2
∂2

∂φi∂φi

(
1

‖φ‖2
)

D

(
φ

x

)
d4x. (44)

The general Green function formula [17] inφ space is

∂2

∂φi∂φi

(
1

‖φ‖2
)
= −4π2δ(φ). (45)

We obtain the new formulation of the Nieh–Yan form in terms of theδ function,δ(φ):

N = 12π2l2δ(φ)D(φ/x) d4x. (46)

Supposeφ(x) hasl isolated zeros onM and let theith zero bezi , it is well known from
the ordinaryδ-function theory [18] that

δ(φ) =
l∑
i=1

βiδ(x − zi)
D(φ/x)|x=zi

. (47)

Then one obtains

δ(φ)D

(
φ

x

)
=

l∑
i=1

βiηiδ(x − zi) (48)
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whereβi is the positive integer (the Hopf index of theith zero) andηi the Brouwer degree
[19,20]:

ηi = sgn D(φ/x)|x=zi = ±1. (49)

From the above deduction the following topological structure is obtained:

nN−Y = 12π2l2δ(φ)D

(
φ

x

)
d4x = 12π2l2

l∑
i=1

βiηiδ(x − zi) d4x (50)

which means that the local structure ofN is labelled by the Brouwer degrees and Hopf indices,
which are topological invariants. Therefore, the Nieh–Yan numbernN−Y can be represented
as

nN−Y =
∫
M

N = 12π2l2
l∑
i=1

βiηi . (51)

On the other hand, we can decomposeM as

M =
∑
i

Mi (52)

so thatMi includes only theith singularity pointzi of n(x). Then we get

nN−Y =
∑
i

∫
Mi

l2εijkl dni ∧ dnj ∧ dnk ∧ dnl

=
∑
i

∮
∂Mi

l2εijklni ∧ dnj ∧ dnk ∧ dnl (53)

where∂Mi is the boundary ofMi . Equation (53) is another definition of the winding number
W(φ, zi) of the surface∂Mi and the mappingφ(x) [23]

W(φ, zi) = 1

12π2

∮
∂Mi

εijklni ∧ dnj ∧ dnk ∧ dnl = βiηi . (54)

Then, the Nieh–Yan numbernN−Y can be expressed further in terms of the winding numbers

nN−Y = 12π2l2
l∑
i=1

W(φ, zi). (55)

The sum of the winding numbers can be interpreted or, indeed, defined as the degree of the
mappingφ(x) ontoM . By (46) and (53), we have

l∑
i=1

W(φ, zi) =
∫
M

δ(φ)D

(
φ

x

)
d4x

= degφ
∫
φ(M)

δ(φ) d4φ

= degφ. (56)

Therefore, we finally get the Nieh–Yan number

nN−Y = 12π2l2
l∑
i=1

W(φ, zi) = 12π2l2 degφ. (57)

From (6), we know that the zeros ofφ are just the singularities ofn. Here, (51) implies that
the sum of the indices of the singular points ofn, or of the zeros ofφ, is the Nieh–Yan number.
One should notice that the vector fieldφ is not a section of the tangent bundle ofM , i.e.φ is not
a Riemannian vector field. Therefore, formula (57) is not concerned with the Poincaré–Hopf
theorem which connects the Euler characteristics with the zeros of a Riemannian vector field.
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4. Higher-dimensional case

In a 2d -dimensional case, we can get similar results. Under the pure gauge condition, the
nonvanishing term of the generalized Nieh–Yan form is

(dei ∧ dei)
2d−2
. (58)

The computation above is also valid in this case. The topological structure of generalized
Nieh–Yan form is constituted by theδ function of someφ. The Hopf indices and Brouwer
degree label the local structure of the Nieh–Yan form. The Nieh–Yan number is some constant
number times the degree or winding numbers ofφ:

N ∼ δ(φ)D

(
φ

x

)
d2d x =

∑
i

βiηiδ(x − zi) d2d x. (59)

In the following, we only take the eight-dimensional case as an example.
In an eight-dimensional compact manifold, under gauge condition (20), the generalized

Nieh–Yan form is expressed simply as

N = d(ei ∧ dei ∧ dej ∧ dej ). (60)

And the vielbein is expressed locally in terms of the octonions under Clifford algebra
representation

e = eisi = l

‖φ‖2φ dφ† (61)

where

φ = φisi i = 1, 2, . . . ,8

in which si is the basis of octonions. Substituting (61) into (60), we get the Nieh–Yan form in
eight dimensions in terms of the unit vectorni = φi

‖φ‖ as

N = l4

5
εi1i2...i8 dni1 ∧ dni2 ∧ . . . ∧ dni8. (62)

Analogously to the four-dimensional case, using the general Green function formula [17] in
eight-dimensionalφ space, the generalized Nieh–Yan form is expressed as

N = 1008l4A(S7)δ(φ)D

(
φ

x

)
d8x

= 336π4l4δ(φ)D

(
φ

x

)
d8x (63)

which can be rewritten in terms of Hopf indices and Brouwer degree as

N = 336π4l4
∑
i

βiηiδ(x − zi) d8x. (64)

The Nieh–Yan number in the eight-dimensional case is

nN−Y = 336π4l4 degφ = 336π4l4
∑
i

W(φ, zi). (65)

Similar results can be obtained for higher 2d -dimensional cases.
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5. Chiral anomaly on spaces with torsion

Consider a massive Dirac spinor on a curved background with torsion. The action is

S =
∫

1
2(d

4x eψ̄ 6 ∇ψ + h.c.) +mψ̄ψ (66)

where the Dirac operator is given by

6 ∇ = eµaγaDµ. (67)

This action is invariant under rigid chiral transformations

ψ ′ → eiεγ5ψ (68)

whereε is a real constant parameter. This symmetry leads to the classical conservation law

∂µJ
µ

5 = 0 (69)

in which

J
µ

5 = eeµaψ̄γaγ5ψ. (70)

The chiral anomaly when torsion is present is given by [5,6,8,11]

∂µ〈Jµ5 〉 = A(x) (71)

with

A(x) = 1

8π2
∗
[
Rab ∧ Rab +

2

l2
(T a ∧ T a − Rab ∧ ea ∧ eb)

]
. (72)

The constantl is called the radius of the universe and is related to the cosmological constant
(|3| = l−2).

Using the results obtained in section 3, we can rewrite the chiral anomaly as

∂µ〈Jµ5 〉 =
1

8π2
∗ [Rab ∧ Rab] + 3δ(φ)D

(
φ

x

)
. (73)

From the relationship

so(4) = su(2)L × su(2)R (74)

the Pontryagin class of theSO(4) group can be expressed as the sum of the second Chern
classes of the left and rightSU(2)L(R) subgroup

Tr(R ∧ R) = Tr(RSU(2)L ∧ RSU(2)L) + Tr(RSU(2)R ∧ RSU(2)R ). (75)

By making use of the result of Duan and Fu [21]:

1

8π2
Tr(RSU(2) ∧ RSU(2)) = δ(φ̃)D

(
φ̃

x

)
d4x (76)

whereφ̃ belongs toSpin(3) corresponding to the groupSU(2). In Duan and Fu’s paper, the
pure gauge condition is also used to get the topological structure of the second Chern class for
SU(2) group. We now get the chiral anomaly

∂µ〈Jµ5 〉 = δ(φ̃L)D

(
φ̃L

x

)
+ δ(φ̃R)D

(
φ̃R

x

)
+ 3δ(φ)D

(
φ

x

)
(77)
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in whichφ̃L andφ̃R are someSpin(3)L(R) elements corresponding to the subgroupsSU(2)L(R).
Furthermore, by making use of the structure of delta function, the anomaly can be formulated
more explicitly:

∂µ〈Jµ5 〉 =
∑
i

δ(x − zLi)βLiηLi +
∑
i

δ(x − zRi)βRiηRi + 3
∑
i

δ(x − zi)βiηi

=
∑
i

δ(x − zLi)WLi +
∑
i

δ(x − zRi)WRi + 3
∑
i

δ(x − zi)Wi (78)

whereβL(R)i andηL(R)i are the Hopf indices and Brouwer degrees, respectively, corresponding
to the zeros of̃φL(R), andWL(R)i is the winding number of̃φL(R) at its ith zeros. From (78),
we see, under the pure gauge condition, that the chiral anomaly comes only from the zeros of
the fieldsφ̃LR andφ, and that their winding numbers account for the magnitude of the chiral
anomaly.

6. Conclusion

In this paper, we have discussed the Nieh–Yan form by making use of the decomposition
theory of spin connection. The Nieh–Yan form in a four-dimensional manifold is proved to
takeδ-function form under a locally flat gauge condition. The local topological structure of
the Nieh–Yan form is labelled by Hopf indices and Brouwer degrees of fieldφ, which is used
to express the vielbein under a locally flat (or pure) gauge condition. The Nieh–Yan number
is proved to be a constant number times the degree or winding number ofφ.

A general discussion of the generalized Nieh–Yan form on a 2d -dimensional manifold is
presented. From the example of an eight-dimensional case, we find the topological structure
of the generalized Nieh–Yan form is similar to the four-dimensional case in terms of the fieldφ

under the pure gauge condition. It is noticeable that the Clifford algebra can make the calculus
simpler in these cases.

The topological anomaly with nonvanishing torsion is formulated explicitly under the pure
gauge condition. There are two kinds of contribution in the anomaly which comes from the
topology of the manifold: the Pontryagin class ofSO(4) and the Nieh–Yan form. We have
proved each of them to be a sum ofδ functions of some fields,̃φL(R) andφ, under the pure
gauge condition. This means the contribution comes only from the zeros ofφ̃L(R) andφ. The
degrees or winding numbers ofφ̃L(R) or φ give the magnitude of the contributions.
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